设计提示的通用技巧

以下是设计提示时需要记住的一些技巧:

从简单开始

在开始设计提示时,你应该记住,这实际上是一个迭代过程,需要大量的实验才能获得最佳结果。使用来自OpenAI或Cohere的简单的 playground 是一个很好的起点。

你可以从简单的提示词开始,并逐渐添加更多元素和上下文(因为你想要更好的结果)。因此,在这个过程中不断迭代你的提示词是至关重要的。阅读本指南时,你会看到许多示例,其中具体性、简洁性和简明性通常会带来更好的结果。

当你有一个涉及许多不同子任务的大任务时,可以尝试将任务分解为更简单的子任务,并随着结果的改善逐步构建。这避免了在提示设计过程中一开始就添加过多的复杂性。

指令

你可以使用命令来指示模型执行各种简单任务,例如“写入”、“分类”、“总结”、“翻译”、“排序”等,从而为各种简单任务设计有效的提示。

请记住,你还需要进行大量实验以找出最有效的方法。以不同的关键词(keywords),上下文(contexts)和数据(data)试验不同的指令(instruction),看看什么样是最适合你特定用例和任务的。通常,上下文越具体和跟任务越相关则效果越好。在接下来的指南中,我们将讨论样例和添加更多上下文的重要性。

有些人建议将指令放在提示的开头。另有人则建议是使用像“###”这样的清晰分隔符来分隔指令和上下文。

例如:

提示:


### 指令 ###
将以下文本翻译成西班牙语:
文本:“hello!”

输出:


¡Hola!

具体性

要非常具体地说明你希望模型执行的指令和任务。提示越具描述性和详细,结果越好。特别是当你对生成的结果或风格有要求时,这一点尤为重要。不存在什么特定的词元(tokens)或关键词(tokens)能确定带来更好的结果。更重要的是要有一个具有良好格式和描述性的提示词。事实上,在提示中提供示例对于获得特定格式的期望输出非常有效。

在设计提示时,还应注意提示的长度,因为提示的长度是有限制的。想一想你需要多么的具体和详细。包含太多不必要的细节不一定是好的方法。这些细节应该是相关的,并有助于完成手头的任务。这是你需要进行大量实验的事情。我们鼓励大量实验和迭代,以优化适用于你应用的提示。

例如,让我们尝试从一段文本中提取特定信息的简单提示。

提示:


提取以下文本中的地名。
所需格式:
地点:<逗号分隔的公司名称列表>
输入:“虽然这些发展对研究人员来说是令人鼓舞的,但仍有许多谜团。里斯本未知的香帕利莫德中心的神经免疫学家 Henrique Veiga-Fernandes 说:“我们经常在大脑和我们在周围看到的效果之间有一个黑匣子。”“如果我们想在治疗背景下使用它,我们实际上需要了解机制。””

输出:


地点:里斯本,香帕利莫德中心

输入文本来自这篇 Nature 文章(opens in a new tab)

避免不明确

给定上述关于详细描述和改进格式的建议,很容易陷入陷阱:想要在提示上过于聪明,从而可能创造出不明确的描述。通常来说,具体和直接会更好。这里的类比非常类似于有效沟通——越直接,信息传达得越有效。

例如,你可能有兴趣了解提示工程的概念。你可以尝试这样做:


解释提示工程的概念。保持解释简短,只有几句话,不要过于描述。

从上面的提示中不清楚要使用多少句子以及什么风格。尽管你可能仍会从上述提示中得到较好的响应,但更好的提示应当是非常具体、简洁并且切中要点的。例如:


使用 2-3 句话向高中学生解释提示工程的概念。

做什么还是不做什么?

设计提示时的另一个常见技巧是避免说不要做什么,而应该说要做什么。这样(说要做什么)更加的具体,并且聚焦于(有利于模型生成良好回复的)细节上。

以下是一个电影推荐聊天机器人的示例,因为我写的指令——关注于不要做什么,而失败了。

提示:


以下是向客户推荐电影的代理程序。不要询问兴趣。不要询问个人信息。
客户:请根据我的兴趣推荐电影。
代理:

输出:


当然,我可以根据你的兴趣推荐电影。你想看什么类型的电影?你喜欢动作片、喜剧片、爱情片还是其他类型的电影?

以下是更好的提示:

提示:


以下是向客户推荐电影的代理程序。代理负责从全球热门电影中推荐电影。它应该避免询问用户的偏好并避免询问个人信息。如果代理没有电影推荐,它应该回答“抱歉,今天找不到电影推荐。”。
```顾客:请根据我的兴趣推荐一部电影。
客服:

输出:


抱歉,我没有关于你兴趣的任何信息。不过,这是目前全球热门的电影列表:[电影列表]。希望你能找到喜欢的电影!

上述示例中的一些内容摘自 "Best practices for prompt engineering with OpenAI API" article.