aigc
Active-Prompt
思维链(CoT)方法依赖于一组固定的人工注释范例。问题在于,这些范例可能不是不同任务的最有效示例。为了解决这个问题,Diao 等人(2023)(opens in a new tab)最近提出了一种新的提示方法,称为 Active-Prompt,以适应 LLMs 到不同的任务特定示例提示(用人类设计的 CoT 推理进行注释)。
下面是该方法的说明。第一步是使用或不使用少量 CoT 示例查询 LLM。对一组训练问题生成 k 个可能的答案。基于 k 个答案计算不确定度度量(使用不一致性)。选择最不确定的问题由人类进行注释。然后使用新的注释范例来推断每个问题。
图片来源:Diao等人(2023)